1,858 research outputs found

    Childhood acute respiratory infection in Pakistan

    Get PDF

    Invariant Solutions for Nonhomogeneous Discrete Diffusion Equation

    Get PDF
    One-dimensional optimal systems for nonhomogeneous discrete heat equation with different source terms are calculated. By utilizing these optimal systems invariant solutions are found. Also generating solutions are calculated, using the elements of the symmetry algebra

    The Green Synthesis of Silver Nanoparticles from Avena fatua Extract: Antifungal Activity against Fusarium oxysporum f.sp. lycopersici

    Get PDF
    Using plant extracts as eco-friendly reducing and stabilizing agents for the synthesis of nanoparticles has gained significant attention in recent years. The current study explores the green synthesis of silver nanoparticles (AgNPs) using the Avena fatua extract and evaluates their antifungal activity against Fusarium oxysporum f.sp. lycopersici (Fol), a fungal plant pathogen. A green and sustainable approach was adopted to synthesize silver nanoparticles before these nanoparticles were employed for anti-fungal activity. The primary indication that AgNPs had formed was performed using UV-vis spectroscopy, where a strong peak at 425 nm indicated the effective formation of these nanoparticles. The indication of important functional groups acting as reducing and stabilizing agents was conducted using the FTIR study. Additionally, morphological studies were executed via SEM and AFM, which assisted with more effectively analyzing AgNPs. Crystalline behavior and size were estimated using powder XRD, and it was found that AgNPs were highly crystalline, and their size ranged from 5 to 25 nm. Synthesized AgNPs exhibited significant antifungal activity against Fol at a concentration of 40 ppm. Furthermore, the inhibitory index confirmed a positive correlation between increasing AgNPs concentration and exposure duration. This study suggests that the combined phytochemical mycotoxic effect of the plant extract and the smaller size of synthesized AgNPs were responsible for the highest penetrating power to inhibit Fol growth. Moreover, this study highlights the potential of using plant extracts as reducing and capping agents for the green synthesis of AgNPs with antifungal properties. The study concludes that A. fatua extract can synthesize antifungal AgNPs as a sustainable approach with robust antifungal efficacy against Fol, underscoring their promising potential for integration into plant protection strategies

    Magnetic Properties of Ab initio Model for Iron-Based Superconductors LaFeAsO

    Full text link
    By using variational Monte Carlo method, we examine an effective low-energy model for LaFeAsO derived from an ab initio downfolding scheme. We show that quantum and many-body fluctuations near a quantum critical point largely reduce the antiferromagnetic (AF) ordered moment and the model not only quantitatively reproduces the small ordered moment in LaFeAsO, but also explains the diverse dependence on LaFePO, BaFe2As2 and FeTe. We also find that LaFeAsO is under large orbital fluctuations, sandwiched by the AF Mott insulator and weakly correlated metals. The orbital fluctuations and Dirac-cone dispersion hold keys for the diverse magnetic properties.Comment: 4 pages, 4 figure

    Direction-Dependent CMB Power Spectrum and Statistical Anisotropy from Noncommutative Geometry

    Full text link
    Modern cosmology has now emerged as a testing ground for theories beyond the standard model of particle physics. In this paper, we consider quantum fluctuations of the inflaton scalar field on certain noncommutative spacetimes and look for noncommutative corrections in the cosmic microwave background (CMB) radiation. Inhomogeneities in the distribution of large scale structure and anisotropies in the CMB radiation can carry traces of noncommutativity of the early universe. We show that its power spectrum becomes direction-dependent when spacetime is noncommutative. (The effects due to noncommutativity can be observed experimentally in the distribution of large scale structure of matter as well.) Furthermore, we have shown that the probability distribution determining the temperature fluctuations is not Gaussian for our noncommutative spacetimes.Comment: 26 pages. v3: Minor correction

    A Quintessentially Geometric Model

    Full text link
    We consider string inspired cosmology on a solitary D3D3-brane moving in the background of a ring of branes located on a circle of radius RR. The motion of the D3D3-brane transverse to the plane of the ring gives rise to a radion field which can be mapped to a massive non-BPS Born-Infeld type field with a cosh potential. For certain bounds of the brane tension we find an inflationary phase is possible, with the string scale relatively close to the Planck scale. The relevant perturbations and spectral indices are all well within the expected observational bounds. The evolution of the universe eventually comes to be dominated by dark energy, which we show is a late time attractor of the model. However we also find that the equation of state is time dependent, and will lead to late time Quintessence.Comment: 11 pages, 3 figures. References and comments adde

    Effects and cost of different strategies to eliminate hepatitis C virus transmission in Pakistan: a modelling analysis

    Get PDF
    Background The WHO elimination strategy for hepatitis C virus advocates scaling up screening and treatment to reduce global hepatitis C incidence by 80% by 2030, but little is known about how this reduction could be achieved and the costs of doing so. We aimed to evaluate the effects and cost of different strategies to scale up screening and treatment of hepatitis C in Pakistan and determine what is required to meet WHO elimination targets for incidence. Methods We adapted a previous model of hepatitis C virus transmission, treatment, and disease progression for Pakistan, calibrating using available data to incorporate a detailed cascade of care for hepatitis C with cost data on diagnostics and hepatitis C treatment. We modelled the effect on various outcomes and costs of alternative scenarios for scaling up screening and hepatitis C treatment in 2018–30. We calibrated the model to country-level demographic data for 1960–2015 (including population growth) and to hepatitis C seroprevalence data from a national survey in 2007–08, surveys among people who inject drugs (PWID), and hepatitis C seroprevalence trends among blood donors. The cascade of care in our model begins with diagnosis of hepatitis C infection through antibody screening and RNA confirmation. Diagnosed individuals are then referred to care and started on treatment, which can result in a sustained virological response (effective cure). We report the median and 95% uncertainty interval (UI) from 1151 modelled runs. Findings One-time screening of 90% of the 2018 population by 2030, with 80% referral to treatment, was projected to lead to 13·8 million (95% UI 13·4–14·1) individuals being screened and 350 000 (315 000–385 000) treatments started annually, decreasing hepatitis C incidence by 26·5% (22·5–30·7) over 2018–30. Prioritised screening of high prevalence groups (PWID and adults aged ≥30 years) and rescreening (annually for PWID, otherwise every 10 years) are likely to increase the number screened and treated by 46·8% and decrease incidence by 50·8% (95% UI 46·1–55·0). Decreasing hepatitis C incidence by 80% is estimated to require a doubling of the primary screening rate, increasing referral to 90%, rescreening the general population every 5 years, and re-engaging those lost to follow-up every 5 years. This approach could cost US81billion,reducingto8·1 billion, reducing to 3·9 billion with lowest costs for diagnostic tests and drugs, including health-care savings, and implementing a simplified treatment algorithm. Interpretation Pakistan will need to invest about 9·0% of its yearly health expenditure to enable sufficient scale up in screening and treatment to achieve the WHO hepatitis C elimination target of an 80% reduction in incidence by 2030. Funding UNITAID

    γ-Tocotrienol suppresses prostate cancer cell proliferation and invasion through multiple-signalling pathways

    Get PDF
    Tocotrienol-rich fraction (TRF) has demonstrated antiproliferative effect on prostate cancer (PCa) cells. To elucidate this anticancer property in PCa cells, this study aimed, first, to identify the most potent isomer for eliminating PCa cells; and second, to decipher the molecular pathway responsible for its activity. Results showed that the inhibitory effect of γ-tocotrienol was most potent, which resulted in induction of apoptosis as evidenced by activation of pro-caspases and the presence of sub-G1 cell population. Examination of the pro-survival genes revealed that the γ-tocotrienol-induced cell death was associated with suppression of NF-κB, EGF-R and Id family proteins (Id1 and Id3). Meanwhile, γ-tocotrienol treatment also resulted in the induction of JNK-signalling pathway and inhibition of JNK activity by a specific inhibitor (SP600125) was able to partially block the effect of γ-tocotrienol. Interestingly, γ-tocotrienol treatment led to suppression of mesenchymal markers and the restoration of E-cadherin and γ-catenin expression, which was associated with suppression of cell invasion capability. Furthermore, a synergistic effect was observed when cells were co-treated with γ-tocotrienol and Docetaxel. Our results suggested that the antiproliferative effect of γ-tocotrienol act through multiple-signalling pathways, and demonstrated for the first time the anti-invasion and chemosensitisation effect of γ-tocotrienol against PCa cells
    corecore